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QUASINEUTRAL PARTICLE SIMULATION OF MAGNETIZED PLASMA DISCHARGES: 
GENERAL FORMALISM AND APPLICATION TO ECR DISCHARGES 

1. Introduction 

In recent years, there has been considerable interest in the use of low pressure, high 

density plasma sources for materials processing, e.g. for semiconductor etching, and also for 

some types of chemical vapor deposition.1 These types of sources, which include electron 

cyclotron resonance (ECR), helicon and inductively-coupled sources, operate at gas 

pressure ranging from 10 mTorr to below 1 mTorr, and plasma density from several x 1011 

to 1013 cm-3. In this regime, fluid models are not well matched to the characteristics of 

either the ions or the electrons. For example, mean free paths can be comparable to device 

dimensions, the electron response to the driving electromagnetic fields can be nonlocal, and 

velocity distribution functions can be non-Maxwellian (particularly for the high energy 

electrons that determine sheath potentials, ionization rates, and other inelastic collisional 

processes). For these reasons, fully kinetic simulation models are needed to properly 

represent the overall physics and chemistry of the discharge. 

A natural approach to modeling of these types of discharges is the use of particle-in- 

cell (PIC) computer simulations which also include a Monte Carlo (MC) representation of 

collisional processes (PIC/MC models).2 In these simulations, the motion of particles 

between collisions is followed deterministically, under the influence of specified external 

magnetic fields, and self-consistent electrostatic fields computed by calculating the charge 

density of the particles and then solving Poisson's equation. Recent years have seen major 

advances in the development and use of PIC/MC codes.2'11 In most cases, the objective of a 

simulation is to calculate the characteristics of the plasma steady state, or at most of a 

slowly varying state, as a function of the machine control parameters. However, the 

enormous range of spatial and temporal scales in a high-density discharge precludes 

straightforward application of the PIC/MC procedure to simulations of the entire discharge. 

As an example, the spatial and temporal scales for a typical ECR plasma are summarized in 

Table 1. With respect to plasma transport and electrical properties, the approach to a steady 

state occurs over time scales characterized by the escape of ions to the walls, which are 

typically on the order of 0.1 ms to several ms. The evolution to a steady state of the 

chemistry may occur on an even longer time scale characterized by the residence of neutrals 
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in the system. However, a straightforward PIC code must resolve all of the shorter time 

scales, down to and including the electron plasma frequency, electron gyrofrequency and 

microwave frequency time scales, which are on the order of picoseconds. Similarly, the 

spatial scales of real interest in a reactor-scale simulation are macroscopic scale lengths 

(centimeters), but a straightforward particle simulation would have to resolve a vast range of 

spatial scales, down to the electron gyroradius, the Debye length, and the thickness of 

passive sheaths, which are typically 0.01 to 0.1 cm. It would be essentially impossible, 

even with a supercomputer, to resolve this range of spatial and temporal scales within a 

multi-dimensional simulation. To the greatest extent possible, one would like to simulate 

the macroscopic features and the approach to equilibrium, while excluding the fast time 

scales and short spatial scales from the simulation. 

One approach to the problem of time scale diversity is the use of implicit coding to 

avoid resolution of the electron plasma frequency time scale.12"17 However, PIC simulation 

techniques also face a more fundamental difficulty arising from the circumstances of 

quasineutrality. The internal electrostatic field within the bulk plasma plays an essential 

role in the transport of plasma toward the walls, and therefore strongly influences the 

overall structure and characteristics of the discharge. This field is typically less than 1 V/cm 

in the central plasma, up to a few V/cm in the presheath. When viewed in the light of 

Poisson's equation, 

V2tf = 47re(ne-ni), _ (1) 

the source of this field, n-, - ne, represents an electron-ion charge separation that is less than 

10"5 of the density of either electrons or ions. This type of situation is actually quite 

common throughout plasma physics, as processes occurring on ion time scales typically are 

quasineutral, i.e. have I n> - ne I « nr If the electrons and ions in the discharge are 

represented by simulation macroparticles, any attempt to calculate <j> directly from Eq. (1) 

would be overwhelmed by statistical noise. For example, in a million-particle 2-D 

simulation with a 100x100 grid, there are typically 100 electrons or ions in each cell, and 

therefore the statistical fluctuations in nt -ne within a cell would be on the order of 10%, 



which is four orders of magnitude larger than the actual value. Numerical schemes 

involving Poisson's equation are obviously very difficult (and actually inappropriate) in the 

quasineutral limit. Indeed, Chen18 noted long ago that, "In a plasma, it is usually possible to 

assume ne = n{ and V-E * 0 at the same time. This is a fundamental trait of plasmas, one 

which is difficult for the novice to understand. Do not use Poisson's equation to obtain E 

unless it is unavoidable!" 

Over the years, this approach has been followed in many analytic and numerical 

models which represent the plasma as a fluid, or represent the electrons as a fluid within 

some hybrid scheme.19 These methods circumvent the use of Poisson's equation by 

neglecting electron inertia and determining E from the resulting simplified electron 

momentum conservation equation. In these models, n4 is determined from dynamical 

equations, but ne is simply set equal to ns to maintain quasineutrality. This procedure 

eliminates temporal scales on the order of the electron plasma frequency, as well as spatial 

structures on the Debye length scale. However, in kinetic models, and in particular in PIC 

simulations, the usual approach has been to calculate <t> from Poisson's equation. 

We have developed a new fully kinetic approach to the analysis and simulation of 

bounded, weakly collisional plasma discharges in which the bulk plasma is quasineutral. 

Our approach is motivated by the quasineutral fluid techniques described in the previous 

paragraph. At the present stage, the model specifically treats axisymmetric situations in 

which the electrons are strongly magnetized, as in ECR plasmas, but we believe the general 

approach can also be extended to three dimensions and used for unmagnetizedatweakly 

magnetized cases, and is equally applicable to quasineutral processes in high-temperature 

collisionless plasma. Non-uniform externally specified magnetic fields are included, and 

electrostatic fields are computed self-consistently, but Poisson's equation is not used. In the 

numerical implementation, both electrons and ions are represented as PIC particles, with 

Monte Carlo collisions. The spatial gridding relects the macroscopic scale lengths, and the 

time steps are chosen to resolve particle motion over macroscopic lengths. We shall also 

give some examples in which the model provides a natural framework for analytic 

calculations, leading to new insights. The model has the following characteristics: 



(i) Electrons are treated as guiding center particles, and in fact are firmly attached to a 

single flux surface. This eliminates the electron gyro time scale from the dynamics. 

However, the ion gyro motion is resolved both spatially and temporally, and ions are pushed 

through their orbits under the influence of the electrostatic and Lorentz forces (as well as 

collisions). 

(ii) The electric field component E,„ parallel to the magnetic field lines, is determined 

by the requirement that E„ drive the electrons to maintain quasineutrality. This field can be 

specified by a slightly modified form of the electron parallel momentum conservation 

equation with neglect of electron inertia. 

(iii) Sheaths, at either grounded or floating surfaces, are regarded as thin potential 

barriers to electron flow. The sheath structure is not resolved, but the sheath potentials are 

determined self-consistently by the requirement that electron flow to walls be consistent 

with preservation of quasineutrality in the plasma, and also with constraints on current flow 

to the walls. 

(iv) The Böhm condition on ion flow at the bulk-sheath interface is imposed as a 

boundary condition on the bulk flow. This is a key aspect of the model, since the Böhm 

condition is the principal constraint driving plasma flow to the walls. The quasineutral pre- 

sheath is resolved within the model. 

(v) The relative plasma potential on different magnetic field lines, and therefore the 

electric field component Ex transverse to the magnetic field, is determined through 

conditions on the transverse ion flow necessary to maintain quasineutrality. The transverse 

electric field and the transverse ion flow depend significantly on whether the field lines 

terminate on insulating or conducting walls. In the case of conducting walls, the sheath 

potentials and the transverse electric field are intimately related and must be determined 

self-consistently. In this paper, we present the formalism for both cases, and show 

simulation results for the insulating case, which is considerably simpler to implement. 

Resonant heating of the plasma by the microwaves can also be represented in a 

linearized formulation which integrates analytically over the microwave and electron gyro 

frequencies. However, this aspect is not discussed in the present paper. 



Within this framework, plasma oscillations are excluded from the model. Simulation 

time steps need not resolve the electron plasma or gyro frequency; thus they can be chosen 

to resolve motion of individual particles over macroscopic lengths of interest, and/or 

collisional time scales of interest. In typical cases, we use ion time steps of order few x 107 

sec, and sub-cycled electron time steps of order 10"8 sec. The result is a very efficient code 

that can be run to times of real interest, e.g. milliseconds, in a few hours on a workstation. 

The self-consistent separation of sheath and bulk plasma also facilitates intuitive 

understanding and provides a useful framework for analytic calculations. For example, in 

Sec. 7 we shall see how self-consistent variations of the sheath potential can strongly inhibit 

cross-field ion transport. 

2. Structure and Geometry of the Model 

To help motivate the assumptions of the model, it may be useful to consider some 

typical plasma conditions which are of interest to us (while keeping in mind that the model 

is applicable to a much broader range of conditions). In ECR processing sources, the 

microwave frequency is usually 2.45 GHz, so that electron gyroresonance occurs at 875 G. 

In a two-solenoid source (Fig. 1), the magnetic field lines typically diverge downstream, so 

that B~ 1000 G where the microwaves are introduced, decreases to the resonant value 

nearby, and falls to as low as 20 G far downstream. The electron temperature Tc is typically 

a few eV. The ion temperature T, is typically much lower, but the ion flow speed reaches 

the ion sound speed cs = (Te/mi)
1/2 at the interface between the bulk plasma and the sheath. 

Many gas compositions are used for processing, and pressure may vary from 0.1 mTorr to > 

10 mTorr, but for specificity we shall consider Ar at pressure 1 mTorr. Typically, the 

plasma density will be few x 10u to 1013 cm"3, so that the ionization fraction is between 1% 

and 20%. 

Under these conditions, the electron gyroradius is extremely small (< 1 mm) and the 

electron mean free path is so long (about 40 cm for electron-neutral collisions20-21 and 30 cm 

for electron-ion collisions at plasma density 10« cm'3 and Tc=4eV) that electron collisional 



diffusion across field lines is very slow. Typically an electron will diffuse across field lines 

by < 1 cm, before eventually escaping from the system to a wall. Furthermore, we shall 

restrict our attention in this paper to axisymmetric systems, so that all collisionless electron 

drifts are azimuthal. Thus, it is quite reasonable to assume that each electron is strictly 

confined to a particular flux tube.22 In the framework of r-z geometry, where the azimuthal 

coordinate is ignorable, we may think of the electrons as strung out along the magnetic field 

lines. Thus the electron motion is essentially one-dimensional in the r-z plane. 

In order to treat the electron dynamics efficiently and accurately, we use magnetic 

field lines, denoted by a discrete index j, as one of the coordinates for our grid. The spacing 

of the field lines chosen for the grid is arbitrary, and in principle may be chosen to optimize 

the resolution in regions of particular interest. However, there are also numerical 

constraints on the choice of grid field lines, e.g., it is necessary to maintain an adequate 

number of particles on each grid field line to control statistical fluctuations. The grid used 

in typical simulations is shown in Fig. 2. The axial coordinate z is used as the other 

coordinate for the grid; equally spaced grid lines in z are denoted by the index k. The use 

of a non-uniform and non-orthogonal grid, which also intercepts the radial wall at oblique 

angles, complicates the code structure considerably, but affords great simplicity and 

efficiency in the treatment of electron dynamics: each electron is permanently associated 

with a single field line j during its entire lifetime in the system, and in the particle lay-down 

is linearly distributed onto the two nearest grid points, (j,k) and (j,k+l). 

The ion gyroradius ranges from a few mm for thermal ions in the strong field region, 

to tens of cm for ions moving at cs in the weak field region. Furthermore, the ion mean free 

path for charge exchange23-24 (- 10 cm) is often comparable to or moderately larger than the 

ion gyroradius. Thus the ions are only weakly magnetized. In the model, the ion orbits are 

computed in full 3-D, under the influence of the externally specified magnetic field, the self- 

consistent electric fields which are interpolated from the field line grid onto an r-z grid, and 

Monte Carlo collisions. After the completion of an ion time step, the ion density is laid 

down on the j-k grid, as follows. Each ion is attributed in z fully to its nearest neighbor grid 

value k, and then is apportioned among the two field lines between which it is located, 

according to the quadratic formula 
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which is appropriate to r-z geometry. Here, the ion coordinate r is located between field 

lines j and j+1. with rjk and rj+u the coordinates of the nearest grid points on field lines j and 

j+1 respectively, and TJJ1C is the fraction of the ion that is attributed to field line j. 

3. Electron Dynamics and Parallel Electric Field 

Since the electrons are represented as guiding center particles, each electron is 

characterized by its location along the field line. In the code we use the Cartesian 

coordinate z to specify this location, but in analytic development it is often useful to use $, 

the curvilinear coordinate along the field line. In addition, each electron has a parallel 

velocity v„ and a perpendicular (gyrating) velocity v±. We assume that the magnetic 

moment ß = mev±
2 / 21BI is a constant of the motion in between collisions, so usually it is 

convenient to characterize the electron by its value of ß rather than vx. The effective 

parallel force acting on an electron, between collisions, is then 

F„ = -eE„-M(dB/d5), (3) 

where the second term is the mirror force. In the computational model, the electrons are 

pushed, between collisions, as simulation particles subject to the force F„. The time step Ate 

for the electron push is chosen to resolve electron motion over macroscopic lengths of 

interest, and also to resolve electron collisional time scales. Typically Ate is a small fraction 

of the time step Aq used to push ions. 
Let us assume for the moment that the number of electrons on a field line j is equal to 

the number of ions assigned to that field line, so that the field line is globally quasineutral. 



(We will later discuss how to insure that this is true.) The electron Debye length is always 

smaller than any scale length resolved in the model, and the electron plasma frequency is 

always fast compared to any time scale resolved in the model. Thus, if there were any 

departure from local quasineutrality, the resulting strong electric field would drive electron 

currents parallel to B, which would restore quasineutrality within a time scale of several 

electron plasma periods, i.e. essentially instantaneously on the time scale of the model. 

Thus, the macroscopic parallel electric field always takes the value necessary to keep the 

electron density ne equal to the ion density n;. To specify this electric field, we can begin 

with the electron momentum equation. For magnetized electrons on curved field lines, this 

equation takes the form 

_sE|| = J^ ^ (P^n^ - UU   +  v<mA|( + I_| (Wi||) .   (4) 

Here, me is the electron mass, PeM = neTeM is the electron parallel pressure, 

Pc„ = J*dv„ m^vn-u,,,)2 feCvii.vJ, (5) 

ueM is the mean electron fluid velocity, ~p is the average magnetic moment at the specified 

location, and vc is the mean electron momentum transfer collision frequency. 

Within the particle simulation, the first three terms on the right hand side (RHS) of 

Eq. (4) can be evaluated at each point of the grid, by laying down the mean quantities for 

the electrons assigned to that grid point. These terms represent the "ambipolar" electric 

field -eE,^0) necessary to sustain the quasineutrality relation 

(« 

if n; were a specified time-independent function of $. The remaining term (the inertial term) 

is a small correction, of order me/mi, where m; is the ion mass. In quasineutral fluid 

formulations, where ne is simply set equal to ni5 the inertial term is neglected. However this 

is unsatisfactory in a particle simulation, where ne and ^ are separately determined by the 



particle evolution: if the inertial term is neglected, nc and n{ will drift apart as n, slowly 

changes and ne does not respond. Even worse, in a particle code both nc and r^ are subject to 

continual fluctuations, and the ambipolar field allows ne and nt to separate through these 

fluctuations. 

There are several possible approaches to the calculation of the inertial term, or of 

some approximate form that couples ne to n;. In a previous publication,25 we developed an 

approximate method in which the electrons are pushed in the ambipolar field, and then at 

the end of the time step a correction field is applied that is chosen to restore quasineutrality. 

Although this method worked well in most respects, we have found another approach that is 

even simpler, and very accurately conserves energy over long time scales. We simply drop 

the inertial term in (4) and substitute ^ for n^ in the first term of (4), so that 

_eE|| = ^^^(wu^i^am. + VemeUeM. (7) 

Equation (7) keeps the electron density closely coupled to the ion density, while avoiding 

the very high-frequency plasma oscillations that are linked to the last term of (4). This can 

be seen by substituting (7) for EM in the exact momentum equation (4), to obtain 

*V 
3Ue    _   (ow™„     2l_LlnfEi.l. (8) £HT-w)illn&) 

Equation (8) shows that the electrons are always accelerated up the gradient in n/ne, i.e. 

toward the point of maximum positive net charge density, thereby restoring quasineutrality. 

We showed in Ref. 26 that this scheme is stable, preserves ne = nj while supporting only 

lower-frequency oscillations, conserves energy to good accuracy, and accurately represents 

kinetic effects. For example, the usual dispersion relation for ion sound waves, including 

the Landau damping terms, can be derived.26 We also gave several examples of successful 

implementation of the scheme in a one-dimensional particle simulation with no boundaries, 

including linear and nonlinear ion sound waves, and free expansion of a plasma. 
26 



4. Sheaths at Passive Surfaces 

At any material surface in contact with the plasma, there is a sheath where 

quasineutrality fails. We shall consider here only sheaths at unpowered or weakly dc-biased 

surfaces, e.g. vessel walls. The sheath thickness is typically a few times the Debye length 

XD, which is very thin for conditions of interest. For example, XD = 15 /im at Tc = 4 eV, 

n = 1012 cm'3. Such a sheath can be treated as simply a thin potential jump <j>s, which 

accelerates positive ions toward the wall, but reflects most electrons back into the plasma. 

At any given time, only a few electrons with high enough parallel energy can surmount the 

sheath potential barrier and reach the wall. (However, any electron can eventually diffuse 

up to high energy, due to ECR heating or electron-electron collisions, and escape from the 

system.) The effect of the sheath on the plasma, or on the surface, is essentially completely 

characterized by the sheath potential. 

To determine the value of the sheath potential, we use an elaboration of the "logical 

sheath" scheme of Parker, Procassini and Birdsall.27 Our formulation incorporates the 

Böhm flow criterion, applies appropriately to both conducting and insulating walls, and can 

be used for a multi-dimensional plasma with magnetized electrons. The basic idea is that 

the sheath potential takes the value which allows the "correct" electron flux to reach the 

wall. The conditions for determining the correct flux depend on whether the wall is 

conducting or insulating. 

A. Insulating walls 

An insulating wall exposed to a plasma acquires a surface charge during an initial 

transient period (which we do not resolve), and thereafter the electrical current density to 

any point on the wall must be zero. Thus the sheath potential <f>s at each end of field line j 

must take the value (the floating potential) which sets the flux of electrons, through the 

sheath to the wall, equal to the ion flux into the sheath from the plasma. (All positive ions 

which reach the boundary of the simulation pass through the sheath and reach the wall.) 

Furthermore, according to the Böhm criterion,28 ions must flow from the bulk plasma into 

the sheath at a mean velocity equal to the ion sound speed cs, i.e. the ion flux to any wall is 

10 



j Böhm _ nCs (9) 

In the next section we shall discuss the way in which the Böhm criterion is imposed as a 

boundary condition on the ion flow in the model. However, the implication for the 

electrons is that the electron flux to any wall, Je
out, must satisfy 

00 
f j°ut = sin 6   I  dV||V||fe(vn)   = J Böhm (10) 

i       ' 

where 

1/2 (ID vs = (le^rrg 

and 6 is the angle between the magnetic field and the wall. If the electron velocity 

distribution function fe(v„) at the end of field line j is known, Eqs. (10) and (11) determine 

the sheath potential <f>s. 

To implement this prescription numerically, we first push both the electrons and ions 

through a complete ion time step At, If an electron reaches a wall, it is reflected back along 

its field line, on the tentative assumption that its energy was insufficient to penetrate the 

sheath potential barrier. However, it is noted that that particular electron belongs to the set 

Sebounce of electr0ns on field line j that reflected off the wall during At, In general, this 

number of electrons will be much larger than the number of ions that reach that wall during 

the time step, AN?ohm = j.B°hmAtiAj, where Aj is the area intercepted on the wall by the flux 

tube associated with field line j. We then identify the subset SjJ* of S«*"" consisting of 

the ANJfhm electrons which had the highest parallel energy at the moment of reflection. 

These electrons are assumed to have escaped during the time step; hence they are discarded. 

The sheath potential tf sj is set equal to the lowest parallel kinetic energy of any of the 

electrons in the subset Se«?u\ at the time it reached the simulation boundary. 

There are a number of numerical points which must be considered in actually 

implementing this scheme. The sheath potential depends on the high-energy tail of the 

11 



electron distribution, which always contains relatively few simulation electrons and is 

susceptible to noise. To minimize this, At; must be large enough that a substantial absolute 

number of electrons are allowed to escape during the time step. However, the fraction of 

electrons which leave during At; must be small. In a steady state situation, the departed 

electrons will be replaced by new electrons generated by ionizing collisions, and one must 

be careful not to overcount ionizing collisions involving electrons that actually escaped 

during At;. Also, there may be electrons with high parallel velocities that bounce off both 

walls during the time step At;, and these must be accounted for correctly. 

B. Conducting walls 

When the walls are conducting, there will typically be a boundary condition 

specifying the potential on any given segment of the wall. In the simplest case, the walls 

may all be regarded as grounded, but in other cases a dc bias may be applied. (We do not 

consider ac biases in this paper.) For conducting walls, there is a more complicated set of 

conditions that determines the sheath potentials. It is possible for non-zero electrical current 

density to flow to any given point on the wall, i.e. the electron flux to the wall need not be 

locally equal to the ion flux out of the plasma. Within the plasma, there may be currents 

flowing along a field line, and also ion currents flowing across field lines. However, 

quasineutrality imposes a constraint on the electron and ion fluxes: the total number of ions 

and electrons on any given field line must remain equal. This is the condition that 

determines the sheath potentials. 

Let J ?ut(0) be the electron flux to the wall at the z = 0 end of field line j, and Je°ut(zmax) 

be the flux to the wall at the other end of field line j. Let Jj°hm(0) and Jj°hm(zmax) be the 

Böhm flux of ions into the sheaths at z = 0 and zmax respectively. Then maintenance of 

global quasineutrality on field line j requires that 

jof (0)   + J°f (zmax) 

Bohm/nN      ,    lTB?hm(Z__„)      + jBohm(0)     +   jBohm(z 
max' 

dzV.JiM(z). (12: iXj 

0 

12 



The last term in Eq. (12) represents the net decrease in the number of ions attributed to field 

line j, due to ion flow across field lines within the plasma. 

In Eq. (12), the electron fluxes to the walls are determined by the sheath potentials 

4sj(0) and tfsj(zm J, 

-vsj(z=0) 

Jlf (z=0)   =  sin ej0 
dV||V||fe(z=0,vl|), (13a) 

CO 

JSMW  = sinöJ. dvnvufefz^v,,), (13b) 

VsjU««) 

where 

vsj(z=0) = [2e0sj(z=O)/ me]
1/2

) 

\s(zmJ = [2^zmJ/me}1'2, (13c) 

0jo is the angle between field line j and the wall at z = 0, and 0jmax the angle at z = zmax. If 

the walls are grounded (tf =0), then the plasma potential just inside the sheath, at either z = 0 

or zmax, is just equal to the sheath potential. However, the difference between the plasma 

potentials *j(zmax)and ^(0) is given by the line integral ofE,,(z), the parallel electric field 

given by Eq. (7). Thus the two sheath potentials are related by 

^(^-^(O) dzE„(z), d4) 

0 

and Eq. (12) in effect specifies both sheath potentials, provided the electron energy 

distributions and the ion flux are known from the simulation. 

If there is an externally imposed potential difference along field line j, between the 

walls at z = 0 and zmax, then Eq. (14) takes the more general form 
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0si(Zmax)-*si(°)     =    «ext    ~ S3 v    max' 
dzE|,(z), (15) 

0 

where <f>ext is the imposed potential difference. While Eq. (12) specifies the total electron 

flux escaping from the field line, Eq. (15), together with the rest of the simulation equations, 

determines separately the flux of electrons to the walls at z = 0 and zmax, and thus in effect 

the electric current flowing along the field line. In this way, the simulation calculates the 

electric current density in terms of the imposed voltage, i.e. it gives a macroscopic Ohm's 

law for the plasma. 

It is clear from this formulation that in the case of conducting walls the sheath 

potentials are intimately connected to the cross-field ion flow. We shall see that it is 

necessary to calculate both the sheath potentials and the ion flow self-consistently at each 

time step. Therefore we shall defer the discussion of a scheme for actually calculating the 

sheath potentials to Sec. 6, where the ion dynamics are discussed. 

5. Imposition of the Böhm Criterion as a Boundary Condition 

In Sec. 4, we have shown how to specify the correct sheath potential, and impose this 

potential barrier as a boundary condition to the electron flow. In a real plasma, or in a 

model that calculates the internal electric field through Poisson's equation, a sheath with the 

correct potential will very quickly form, as a response to the rapid initial loss of electrons to 

the wall. Simultaneously, the ions will be accelerated to a mean speed u^, normal to the 

wall, given by 

at the interface between the quasineutral bulk plasma and the ion-rich sheath. Indeed, it is 

well known that a steady-state monotonic sheath, with n; > ne, can form only where the ion 

flow in the bulk plasma satisfies Eq. (16). This is known as the Böhm criterion.1,28 
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In a magnetized plasma, an ion-rich sheath will form at every surface which the 

magnetic field lines intersect at an angle greater than (n^/m;)172. As long as there is an ion- 

rich sheath, the Böhm criterion (16) normally holds, independently of the direction of the 

magnetic field; in (16), we use the notation UjX with superscript J_ to denote the velocity 

normal to the wall, not to the magnetic field. 

However, our quasineutral model, as described in the preceding sections, describes 

only the bulk plasma and simply assumes the existence of a sheath, without requiring that 

the appropriate bulk flow conditions obtain. Equation (16) is not a consequence of the 

quasineutral model; steady state solutions exist which satisfy Eq. (16), but there are also 

solutions which exhibit other ion flow patterns at the walls. For example, if the ions are 

initially cold and uniform and the electrons are isothermal throughout the bulk plasma, the 

electron pressure will remain uniform, no electric field will be generated, and there will be 

no ion flow toward the wall. Thus, within our model, the Böhm condition must be imposed 

externally as a boundary condition to the ion flow, which is necessary to specify the correct 

solution of the equations. One may say, from the perspective of the bulk plasma, that the 

Böhm condition causes the flow of the plasma toward the walls. 

Within the context of a fluid model of the quasineutral bulk plasma, Eq. (16) can be 

imposed as a boundary condition to the ion momentum equation. But how is one to impose 

Eq. (16) as a boundary condition within a particle simulation? We have used a procedure 

that seems to imitate the dynamical process that sustains the Böhm condition within the 

quasineutral bulk part of a real discharge. 

In a real plasma, the ion flow speed is equal to cs at the edge of the bulk plasma, but 

falls off to a much lower value within the interior of the plasma. The continuity equation 

then implies that n; falls off at the edge of the bulk plasma. Quasineutrality requires that ne 

= n; = n. Assuming Te does not vary as rapidly as n at the plasma edge, the fall-off in 

electron pressure at the edge leads to an ambipolar electric field [first term of Eq. (7)] which 

sustains the ion flow in the "presheath" region. In the model, we define a thin strip of depth 

d, adjacent to any material surface, with d chosen to be macroscopically small but larger 

than csAti. Within the strip, we lay down the ion velocities to determine the average ion 

flow speed u,f normal to the surface, on field line j. We then add an increment 5u± to all of 
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the ion velocities, such as to bring u-j- to cs. This procedure insures that ri; falls off at the 

perimeter of the bulk plasma just as it would if Böhm flow were occurring. The resulting 

pressure drop at the perimeter leads (over a time scale characterized by the ratio of the 

presheath width to cs) to the formation of an appropriate presheath. Böhm flow is thereafter 

self-sustaining, but only neutrally stable, with the increment öujj- a small adjustment at each 

time step. 

The Böhm flow condition, together with the sheath potential as specified in Sec. 4, 

together represent a complete set of boundary conditions for the quasineutral bulk plasma. 

We shall refer to this as the "Böhm logical sheath" procedure. 

6. Transverse Electric Field, and Ion Transport Across Magnetic Field Lines 

In Sec. 3 we showed how to determine the parallel electric field EM from the 

requirements of quasineutrality, as applied to the electron flow along field lines. Thus, the 

relative potential between any two points on the same field line is known. If the absolute 

potential were specified at. any single reference point on each field line, say at z = 0, then it 

would be known everywhere, and the transverse electric field Ex could also be computed. 

This additional information can also be obtained from the requirements of quasineutrality, 

but it is bound up with the ion flow, rather than the electron flow. The conclusions also 

depend fundamentally on whether the field lines end on insulating walls or on grounded 

conducting walls. 

A. Insulating walls 

In the case of insulating walls, electrical current cannot flow from the plasma to any 

point on the walls. Furthermore, in our model no transverse electron current is permitted 

within the plasma. It follows that if there is non-zero net ion flux onto any field line within 

the plasma, a violation of quasineutrality will occur on that field line. In a real plasma, a 

large potential would immediately build up all along the field line, leading to a reversal of 
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the net transverse ion flow onto the field line, and subsequently to a train of ion plasma 

oscillations. To model this as an effect within a quasineutral framework, we shall stipulate 

that the integrated net ion flux onto any field line is zero, i.e. 

/dzV1-(nui) = 0. (17) 

Equation (17) is well satisfied on time scales longer than the ion plasma frequency, 

expresses the condition of quasineutrality, and can be used to solve for the reference 

potential, 4>(z=0), on each field line. 

To implement Eq. (17) numerically, we begin with the known electric field at the 

previous time step tm, assume that quasineutrality was satisfied at tm, and that the flux 

condition (17) was satisfied at the previous half-time step t"1'"2. First, we push each ion to a 

new velocity v* at time tm+l/2, using the electric fields determined at tm, and to a new 

position (rV) at time tm+1. At the end of the time step, there may be a small inequality of 

order Ats
2 between the number of ions Ny* and electrons Nej* on field line j, since the flux 

continuity condition is satisfied exactly at time tml/2, but may be inaccurate by order Att 

during the time step: 

AN/ = N^ - Nej* * 0    (order Att
2). (18) 

This is an indication that a correction potential 6^ should have been added to the assumed 

potential on field line j, so as to maintain the flux continuity equation (17) throughout the 

time step. This may be thought of as the correction to the reference potential ^(z=0). The 

corresponding correction to the radial electric field is 

5Erük = (S0r6*j+1)/(rj+lik-rjk) <19) 

at z-grid point k, between field lines j and j+1. This in turn leads to a correction velocity 

*vrjk = (e6B,jk/mi)Ati <20) 
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and a position displacement 

6rjk = (e5ErJk/mi)Ati
2 (21) 

for every ion in this grid cell. Using Eqs. (19) - (21), the resulting correction to the number 

of ions on field line j can then be written as 

SNijj = aj_i60j.i - (aj + aj.,)60j + a^,, (22) 

where the coefficients ^ are determined by first summing up the displacements of the 

particles, enumerated with the index n, which are attributed to z-grid point k and lie between 

field lines j and (j+1). and then summing up the contributions of each grid point k to the 

total number of ions on field line j. Given that the ions are apportioned among adjacent 

field lines according to the quadratic scheme (2), the coefficients are found to be2 ,29 

eAt 
lj m/  k   (rij+lf)c - r^k) (rj+1,k - rjk)  n 

2rn+ 
fdrMfdrl, (23) 

£■](§]• 
The quantity 8N^ from Eq. (22) is then set equal to -AN/, so that the quasineutrality 

i-M 

condition becomes 

aj.,5*j.i - (aj + aj.i)S*j + ^ju = -AN/. 
(24) 

Equation (24) is a linear ordinary difference equation which determines Sfy the correction 

to the potential ^(z = 0) which is necessary to maintain global quasineutrality.30 In this 

way, the potential difference between field lines is specified. After 8^ has been calculated, 

the ions are pushed again in the corrected fields. Each field line j will then have Ny = Nej at 

time tm+1, and Eq. (17) will be satisfied at tm+1/2. 

It will be noted that this procedure determines the plasma potentials and the ion flow 

ipled self-consistent way. However, the sheath potentials and the electron flow play in a cout 
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no role in this determination. As we shall see, the situation is different when the walls of 

the vessel are conducting; in this case, the sheath potentials and the escape of electrons to 

the walls must also be included self-consistently in the calculation. 

B. Grounded walls 

In the case of grounded walls, the wall serves as a zero point for the potential that is 

common to all field lines. The potential in the bulk plasma on field line j, just inside the 

sheath at z=0, is thus equal to the sheath potential tfsj. If *sj is known, the potential can be 

calculated at any point on the field line, and the transverse E-field can then be calculated by 

taking differences of potentials on adjacent field lines. However, the sheath potential is 

determined from Eqs. (12) - (14), which involve the ion transverse flow. Thus the 

transverse ion flow is coupled to the escape of electrons through the sheaths. 

To numerically implement the solution to this coupled problem, let us begin by 

rewriting Eq. (12) in the discrete form 

AN^ANf^-ANjjLj, (25) 

Here AN ?ut is the total number of electrons on field line j that escape to the walls, through 

the sheaths at both ends, during time Atj. For any given electron energy distribution, ANe?ut 

is a strong nonlinear function of *sj. ANf*" is the total number^ ions that escape to the 

walls from flux tube j during time At;. AN^ is the net change in the number of ions 

attributed to field line j, due to transverse ion flow within the plasma. 

The numerical solution of Eq. (25) is similar in spirit to the approach used for the case 

of insulating walls, but much more complicated in practice. Let us assume that the plasma 

was quasineutral at the previous time step tm, that the sheath potentials <j>g are known at tra, 

and that Eq. (25) was satisfied at that time. We can then push the ions to new velocities v* 

at tm+1/2 and positions (r*,z*) at tm+1, using the potentials known at time tm. From the new ion 

positions, we can calculate a provisional value of AN^, which we shall call AN^. ANj°hm 

is slowly varying and can be evaluated at the beginning of the time step. However, in 

19 



general Eq. (25) will not be exactly satisfied at the end of the new time step (again the error 

will be of order Atj2), because the ion and electron distributions in phase space will have 

changed a little since the previous time step, and the flux condition (12) will have been in 

error by order Att. 

This is indicative that an increment 60sj should have been added to the sheath 

potentials #s-, so as to preserve the flux condition throughout the time step and the 

quasineutrality condition at the end of the time step. In accordance with the reasoning that 

led to Eq. (22), this leads to a correction SN^ to AN^, given by 

SN^ = aj.,6^., - (aj + Ej.,)«^ + aj60sJ+I, (26) 

where the coefficients ^ are again given by Eq. (23). Now Eq. (25) can be written as 

aj.,6^, - (aj + a,.,)«^ + aj6*sJ+1 + ANe?»Wj + 5tfsj) = ANfhm - AN^. (27) 

The RHS of Eq. (27) can be regarded as known, so Eq. (27) is an ordinary difference 

equation that determines the increments to the sheath potential 8^sj. The equation is 

strongly nonlinear through the term ANe?ut. Once the 8<f>si are known, the ions are pushed 

again in the newly determined potentials, and the electrons with energy exceeding the 

sheath potential are allowed to escape to the wall, as discussed in Sec. 4. Thus the 

computation can proceed, with the ion dynamics, the sheath potentials, and the transverse 

electric fields computed self-consistently at each time step. 

The reader may have noticed that the calculation of the sheath potential correction 

8<f>s- is performed fully implicitly in conjunction with the particle push. This is in fact 

necessary for numerical stability: as will be seen in the next section, the sheath potential 

exerts a diffusive effect on transverse ion current, and the natural time step for this diffusion 

is shorter than we wish to resolve. Everything else in the computation is done explicitly. 
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7. Nature of ion transport 

A. Insulating walls: field-aligned flow model 

Section 6A makes it clear that net ion transport across field lines is impossible in an 

insulating vessel, since the plasma must remain quasineutral and electron transport across 

field lines is negligible. However, it is quite possible for there to be a non-zero transverse 

ion flux at particular locations along a field line. Any transverse flux at one location must 

be canceled out by a reverse flux elsewhere along the field line. Thus, in situations where 

there are strong variations along a field line (as in Fig. 2 where the field lines flare outward 

downstream) one may find patterns of cross-field ion eddy flow. In the next section we 

shall see an example of this type of behavior in our simulations. 

Nevertheless, we shall consider here a simple solvable one-dimensional fluid 

approximation, in which the ion flow is assumed to be field-aligned. This model, which 

extends the work of Godyak and collaborators31 to the case of flow along curved magnetic 

field lines, helps to interpret the two-dimensional simulations, and provides insight into the 

way in which the plasma temperature, density, and other properties are determined by the 

quasineutrality condition, the ambipolar potential, the Böhm boundary condition, and the 

requirement of global power balance. In the model, the electrons on any single field line are 

represented as an isothermal fluid. The ions are treated as a cold fluid, with field-aligned 

flow velocity us, subject to an electric field E„ = - 3* / 3 $ and a constant mean free path Xj 

for (predominantly charge exchange24) collisions with stationary neutrals. In addition, we 

assume that electron-impact ionization proceeds at frequency v„ a function of Te. In steady 

state, the ion continuity and momentum conservation equations, and the Boltzmann relation 

e[* - <f>( 5=0)] = Te ln[n / n( 5=0)], (28) 

can be reduced to a single ordinary differential equation for the normalized ion flow 

velocity u = u/cs, 
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,„      ,  du       u2lul d In B ,9Q. 
{1-u)di" -T-- u~^-~ v (29) 

and a quadrature for the normalized density, 

n(s) 
nW=eXP 

r®     ,    flul      du ] -J0
ds'ul— + dH (30) 

In Eqs. (29) and (30), s=$/$max, vs^v/c,, and XEX/<;max, where $ is the curvilinear 

coodinate along the field line and $ =0, $ = $max are the points at which the field line 

intersects the vessel walls. 

The boundary conditions for Eq. (29) arise from the Böhm condition, but some 

discussion is needed as to the proper way to apply the Böhm condition within a model of 1- 

D ion flow along field lines. If the field line intersects the walls normally, the appropriate 

boundary conditions on the field-aligned velocity u; are given directly by the Böhm 

condition as stated in Eqs. (16), 

u;(0) = -cs, (31a) 

Ui($mJ = +cs. (31b) 

But if the field line intersects the walls obliquely, at angles 60 and 0^ at $ =0 and $max, the 

appropriate boundary conditions at the sheath edge are Eqs. (16) for the velocity component 

normal to the wall. To the extent that flow within the quasineutral plasma is strictly field- 

aligned, this would then give 

Ui(0) = -cs/sine0, (32a) 

Ui($mJ = +cs/sin0max. (32b) 

However, Eqs. (32) are clearly not acceptable boundary conditions, since Eq. (29) becomes 

singular when I u I = 1. The resolution to this dilemma is that one-dimensional flow along 

field lines is not a consistent model, even within the quasineutral plasma, at a point where 

the field lines intersect a wall obliquely. There is always a pre-sheath structure,32 beginning 
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about where Eqs. (31) are satisfied, wherein the ions are accelerated toward the wall and the 

density falls off by a factor of order sin 6. Thus the consistent boundary conditions, within 

the region where one can use a model of field-aligned ion flow, are indeed Eqs. (31). 

The two boundary conditions (31) applied to the single first-order ordinary 

differential equation (29) are an indication that Eqs. (29) and (31) together constitute a 

nonlinear eigenvalue problem: the ionization coefficient v, must take the value necessary to 

permit a solution. Since V! is a rapidly increasing function of Te, Eqs. (29) and (31) actually 

determine the discharge temperature, as well as the velocity profile Uj($). The normalized 

density profile n($)/n(0) and the normalized potential [$($) - 0(0)] /Tc are then determined 

by Eqs. (30) and (28). The absolute plasma density is determined by the power balance 

"in 
= Wout  =   (n(0)cBAJ.(0)+n(5Bax)cllA1(5Illllx))(e1+e*8+|Te)f      (33) 

where Win is the microwave power input to the flux tube, Wout is the energy loss rate due to 

electrons and ions reaching the walls, and A±($) is the cross-sectional area of the flux tube 

at $. For Maxwellian electrons and cold ions, the energy loss per escaped ion is the sum of 

c„ the electron inelastic collison energy loss per ionization (including excitation, 

dissociation, etc. as well as ionization); e0s+Te/2, the ion energy at the wall; and 2Te, the 

mean thermal energy of an escaping electron. 

Equations (28)-(31) show that the normalized profiles Ui($)/cs, n($)/n(0) and [«>($)- 

tf(0)]/Te depend only on the collisionality parameter X and the shape of the magnetic field 

lines (but not the magnitude of the magnetic field). The temperature Te is determined by the 

requirement that the ionization rate be just sufficient to replace the ions lost to the walls. 

Since the eigenvalue v is $maxv,/cs, the ionization rate vx is inversely dependent on the field 

line length $max. In more physical terms, ions escape more rapidly from shorter field lines, 

and thus the ionization rate (i.e. Te) must be larger to replace the lost ions. The density must 

be lower on these field lines so that a specified level of microwave power, divided among 

fewer electrons, is sufficient to raise Te to the required value. 

In Fig. 3, we show a solution of Eqs. (28)-(31) for a case with X = 0.27, Smax = 35 cm, 

and 
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B  =  B0exp s2 
1 (26.9  cm) 

(34) 

corresponding roughly to one of the long interior field lines of Fig. 2, with the gas being 

argon at pressure 1 mTorr. A strong left-right asymmetry is evident, introduced by the non- 

uniform magnetic field. At z = 0, the ions are accelerated in a standard presheath of 

thickness ~Xj, but to the right the ions are accelerated by an electrostatic force arising from 

the mirror effect, and the plasma density falls off as the field lines diverge. Thus there is 

less need on the right for presheath acceleration to satisfy the Böhm condition, and indeed 

the presheath is less evident. 

In Fig. 4, we show how the electron temperature Te on a particular field line depends 

on $max, the length of that field line, with B($) given by (34). Referring to the geometry 

shown in Fig. 2, we note that ^ is essentially the same for all the interior field lines that 

terminate on the end wall, but decreases steadily as we go to the outer field lines that 

terminate on the radial wall. Thus the 1-D model predicts that Te will be constant on the 

interior field lines, but will steadily increase on the outer field lines. Similarly, the average 

density < n > on a particular field line is predicted to be constant on the interior lines but 

steadily decreasing on the outer field lines that terminate on the radial wall. The 1-D model 

of Eqs. (28) - (31), (33) has no dependence on the angles 6Q and 0max, so there is no 

discontinuity in plasma properties between the last field line that terminates (nearly 

normally) on the end wall and the first that terminates (at glancing incidence) on the radial 

wall. As we shall see in Sec. 8, this is not a realistic representation of the 2-D flow. In the 

2-D simulation, field lines which intersect the radial wall lose ions much more rapidly, and 

thus Te is larger and the average density <n> is smaller for field lines that terminate on the 

radial wall. 

We note that the rate at which ions escape from a field line is proportional to the ratio 

of the density at the walls to the mean density on the field line, 7?=[nj(0)+nj($m.ix)]/2<nj:>. 

For this reason, Te and <^> are sensitive to the density profile n^^/n^O) along the field 

line. Within our 1-D model, T? is determined by the solution of Eqs. (29) - (31), but in our 

2-D simulations other effects enter to change the density profile, and thereby also the mean 

values T_i and < n= >. 
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B. Cross-field transport in grounded conducting vessels 

In the case of grounded conducting walls, Simon34"36 showed in 1955 that ions can 

diffuse across magnetic field lines at a rate characterized by the ion gyroradius and mean 

free path, without dragging the electrons across field lines. Quasineutrality is maintained by 

electron flow to the walls along field lines. These calculations have been refined over the 

years,35 and in the present context of weakly magnetized ions, and strong electric fields 

required to satisfy the Böhm condition, correspond to mobility-limited or inertially limited 

transverse ion flow.36 However, the effect of the spatial variation of the sheath potential, 

induced by the ion flow, has traditionally been omitted from these models. Our quasineutral 

formulation of the sheath-coupled transverse flow lends itself to an exploration of this 

effect, which turns out to be dominant in the case of internal perturbations. The sheath 

potential strongly inhibits non-uniformities in the divergence of the transverse ion flow, as 

can be seen from the following considerations. Suppose that momentarily the flow is such 

as to increase the number of ions on field line j, more rapidly than the number of ions on 

adjacent field lines. To maintain global quasineutrality on field line j, it is necessary to 

reduce the electron flow to the walls from field line j, in accordance with Eq. (25). 

Therefore, the sheath potential on field line j increases. But this also increases the plasma 

potential everywhere along field line j, and thus opposes the net ion transverse flow onto the 

field line. To gain analytic insight into this effect, we shall consider some very simplified 

model problems chosen to elucidate particular aspects of the problem. 

Linearized fluid treatment 

Consider a plasma contained within grounded walls at z = 0 and z = L, but unbounded 

in the x and y directions. Let the magnetic field Bz be uniform and along the z-direction. 

Since we wish to focus on the effect of sheath potentials, which are normally very large 

compared to potential variations within the bulk plasma, we shall assume the bulk plasma in 

equilibrium is uniform with density n0, plasma potential <j>0 (equal to the sheath potential), 

25 



and temperatures Te and Tt. However, we recognize the existence of a presheath at the walls 

by allowing the density at the walls, nw, to be smaller than n0 by a factor r?. We then 

consider a small deviation from equilibrium, with perturbations n(x), #(x) and ux(x) to the 

density, sheath potential and ion flow velocity, each of the form eikx. Assume for 

convenience that the perturbation maintains the isothermal character of the plasma, and also 

the ratio ij of wall to bulk density. 

We begin with the linearized ion momentum equation, which takes the form 

n, °3t 
+ i*£i  + ^-ik*  + Vi'^u, =  0, (35) 

m< m< 

where 

V,   '       =     V: 1  + 
0, :i. (36) 

I v^J 

Vj is the ion-neutral momentum transfer collision frequency, and the second term in (36) 

results from the magnetization of the ions, i.e. from the vyxßz force. (This form is 

appropriate when 3uy/3t«vi.) 

We can relate * to n by linearizing Eq. (12). Defining a normalized distribution 

Fe(vz) by fe(vz) = (n0+n)Fe(vz), the pertubation to the total electron flux to the two walls is 

rOUt      _ 2r}n 
27?n 

dvzv2Fe(vz)-     m *F4( 2e0o] 1/2 

J(2e«0/m.)1'2 

The perturbation to the ion flux to the two walls is 

e<j> (37) 

J Böhm _ 27jncs, 

while the effect of the transverse ion flow is contained in the last term of Eq. (12), 

/0
LdzV • Jix = ikLn0ux. Substituting these quantities in Eq. (12), we find 
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ikLm, 
e<f> 1_„ (38) ux- 

2r}Fe(e<f>0) 

For the case of a Maxwellian distribution, where equilibrium requires 

T.        2      l27rmc 

(39) 

Eq. (39) reduces to 

e* =-(ikL/2r?)(miTc)
,/2ux. (40) 

To complete the calculation, we use the isothermal relation Pj = nT} and the perturbed ion 

continuity equation, 

3n        ..            A   *?ncs _   n (41) 
— +   ikn0ux  +  — vxn  -   U, 

where v, is the ionization rate. The last two terms of (41) cancel, since in equilibrium 

Tjn0c, = v,n0L. Using (40) and (41) in (35), we arrive at an equation for ux, 

92ux    k
2Ti k2Lcs 3U,, 3Ux_ (42) 

+  u„ + + V>-JL =   0. 
at2      mi 277   at       l at 

Each of the last three terms of Eq. (42) leads to a distinct type of response. The first 

term, in combination with the second term, leads to sound waves among the ions. These are 

ordinary sound waves associated with the ion pressure and propagating at the ion thermal 

speed, not the ion sound speed. The last term of Eq. (42) represents ordinary collisional 

damping. The third term of (42), which arises from the response of the sheath potential, is 

the most interesting term. Taken together with the first term, the third term leads to 

diffusion of ux, i.e. it is formally similar to a bulk viscosity term. The sheath potential thus 

leads to a dissipative effect which drives the flow toward uniformity of the velocity gradient 

aux/3x. In typical situations, this is the dominant term. To demonstrate this formally, 

consider the normal modes of Eq. (42), 
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ux(x,t) = ux(0) e1 ikx+pt (43) 

where 

P 
k2Lc_     Vi'l 

4T? 

kzLcE    v,' 
- + rr- [fä 

k2Tt 
1/2 

(44) 

The modes are always damped, and if 

W±(Zer2
+  2Vi.'(mi)1/2

>  4 
i?   ITJ k    [TJ 

(45) 

they are purely damped with no oscillation. Since Te/Tj » 1, inequality (45) will normally 

be satisfied. For short wavelength modes, the dissipative effect arising from the electron 

sheath potential response easily dominates over the effect of ion pressure, and quickly 

drives the system back to uniformity in transverse velocity. 

In a simulation code, the time scale for this diffusive process, rdif = 2r?/k2Lcs, can be 

very short. In typical applications of our code, we may have L « 35 cm, cs « 3x 105 cm/s, 

7j « 0.3, and the shortest wavelength modes have 7i7k equal to the spacing of the field lines 

used in the grid, as small as 0.3 cm. This gives rdif= 5x10-'°. Since we wish to use time 

steps much longer than this, it is necessary to calculate the sheath potential implicitly, as 

discussed in Sec. 6. 

Nonuniform microwave heating 

It is important to note that the dissipative effect discussed in the preceding paragraph 

drives the system toward uniform transverse flux, not toward uniform density. This 

distinction has important consequences. Consider, for example, the "high mode" of an ECR 

discharge,37 in which all of the injected microwave energy is absorbed. The power density 

deposited into plasma heating thus depends only on the microwave flux, not on the plasma 

density or other details of the plasma state. The rate of creation of new electron-ion pairs by 
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electron-impact ionization is then simply proportional to the microwave flux. Now suppose 

there is a small sinusoidal perturbation to the microwave flux, which leads to an ionization 

rate of the specified form nm + n^. Then the plasma density will have a similar perturbed 

form, n0 + neikx. If there were no ion transport across field lines, the density perturbation 

would simply be proportional to the ionization source perturbation, 

n       n l_ (46a) 
no 0    nT 

If, on the other hand, the ions can freely diffuse or flow across field lines, the non- 

uniformity in density will be smoothed out, i.e. 

n ^  0 (46b) 

To determine n/n0 correctly, we use Eqs. (35), (40), and the linearized continuity equation, 

— +   ikn„ux  + nx  =   0. W> 
3t L 

[Note the difference in the last term on the LHS of (47), as compared to Eq. (41) where the 

ionization source is assumed to be isothermal.] Neglecting the effect of ion collisions, the 

steady state solution of Eqs. (35), (40), and (47) is given by38 

n _   nT Te (48) 

UIO 

Comparing with Eq. (46a), we see that transverse ion transport does reduce the density 

perturbation, but only by a factor Te/(Te+2Tj) which is very close to unity. Diffusion 

toward uniformity in density is strongly inhibited by the sheath potential response. 
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Ion transport to vessel walls 

We have seen that the response of the sheath potential strongly suppresses internal 

cross-field flows within the plasma. However, it has been known for decades34 that loss of 

ions to the walls, through non-ambipolar cross-field flow, is an important process in 

conducting vessels. The sheath potential response can influence this flow, but it does not 

change the general conclusion. The effect of the sheath potential is merely to induce a 

smooth flow pattern which has uniform divergence, i.e. reduces the density at a comparable 

rate on different field lines. 

A more systematic discussion of cross-field transport, for discharges within 

conducting vessels, will be provided in future publications. 

8. Simulation of an ECR discharge in an insulating vessel 

An axisymmetric simulation code QUASI-rz has been developed which implements 

the formalism presented in Sees. 1 - 6. Electrons are represented as particles transported 

along the field lines, as discussed in Sec. 3. Each electron is characterized by its position z, 

its parallel velocity, and the value of its magnetic moment (which is equivalent to knowing 

the magnitude of its perpendicular velocity). Ions are represented as particles characterized 

by position in the r-z plane and by all three components of velocity, as discussed in Sec. 6. 

Within the plasma, parallel electric fields are calculated as in Sec. 3, and transverse fields as 

in Sec. 6. Sheaths at passive surfaces are represented as thin potential barriers, as in Sec. 4, 

while the Böhm boundary condition is imposed as in Sec. 5. Electron-neutral and ion- 

neutral collisions are included, via a Monte Carlo step (using the null-collision method39-40) 

which occurs at the end of each particle push step. Electron-electron collisions are included 

in the Monte Carlo step via the recently-developed Langevin formulation of multiple small- 

angle scattering,41 which is a great advance in efficiency over previous numerical 

formulations in terms of binary collisions. 

The code is ultimately intended to provide a complete kinetic picture of an ECR 

discharge. We shall present here a sample calculation, which somewhat oversimplifies the 
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representation of ECR experiments which are ongoing at NRL,42"48 but nonetheless 

illustrates a number of interesting points. The geometry is taken to be a cylindrical 

insulating vessel of length 35 cm and radius 7 cm, representing the source region of the 

ECR, as illustrated in Fig. 2. The magnetic field configuration, as shown in Fig. 2, is the 

actual field applied in the experiment, ranging from 1 kG at z = 0 to 171 G at z = 35 cm. The 

gas is argon at pressure 1 mTorr, and a collision set is used which includes accurate cross 

sections for electron-neutral49 and ion-neutral elastic scattering,50 electron-impact ionization 

and excitation,49 and ion-neutral charge exchange.50-51 Leonhardt, et al47 have recently 

shown that interactions between metastables and other components are not important in 

high-density Ar plasma at these pressures, so these are not included in the collision set. 

The representation of electron cyclotron heating is simplified in the present 

simulation. We do not calculate the propagation of the microwaves or the details of their 

interaction with the electrons. Rather, we heat the electrons by giving each electron a 

random kick in transverse velocity every time it crosses the resonant surface, which lies in 

the plane z = 4 cm. The magnitude of the kick Av± is chosen randomly from a Maxwellian 

distribution (2ir)-1/2exp[-(AVj)
2/2A2]. The root-mean-square value A is chosen so that the 

total power absorbed by all the electrons on field line j is equal to PM(rjires)Ajres, where P„(r) 

is the specified microwave power density, rj>res is the value of r where field line j intersects 

the resonant surface, and Aj>res is the area of flux tube j on the resonant surface. In the 

present simulation, we use 

Pii(r) = P0exp(-r2/r0
2), (49) 

with P0 = 1.8 W/cm2 and r0 = 7 cm. The total absorbed microwave power, integrated from 

r = 0 to the wall at r = 7 cm, is then 350 W. 

Given the simplication of the geometry and of the ECR heating process, one cannot 

necessarily expect the simulation to provide a quantitatively acccurate picture of any 

particular experiment. However, the model includes all of the important effects that 

determine the plasma properties, including spatial variation of parameters, flow patterns, 

velocity distribution functions, and ionization fractions. 
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Simulation results 

We chose (arbitrarily) to initiate the simulation with uniform temperature Te = 6.6 eV 

and plasma density n(r,z) proportional to B(z,r), with n= 1.5* 1012 at z = 0. After a time of 

order 300 us the simulation evolves to a steady state, which appears to be insensitive to the 

initial conditions. We shall show graphics illustrating the steady state plasma at time 500 

MS. 

Figure 5 shows the plasma density n(r,z). The peak density is 6.3xl012 cm"3, in 

reasonable agreement with experimental results. Curiously, the peak is seen to be off-axis, 

with a 20% density dip on axis, even though the microwave power is gently peaked on-axis. 

As we shall see, this is a consequence of two-dimensional flows which differ from the field- 

aligned flow model of Sec. 7A. 

Figure 6 shows surface plots of the ion fluid velocity components iiz(r,z) and uir(r,z). 

We note that ions flow to all walls at flow velocity u^ <* cs, in accordance with the Böhm 

condition. At every wall, a presheath is evident in Figs. 5 and 6, wherein the ions are 

accelerated to cs, but the presheath is minimal on the downstream end wall where the 

acceleration largely occurs as a consequence of magnetic field expansion. Figure 7 is a 

vector plot of the ion flux, which more clearly illustrates the surprisingly complex nature of 

the flow. The important feature is that the outer field lines of Fig. 2, which intersect the 

radial wall at an acute angle of 5 ° to 19 °, lose ions to the wall over a relatively large area at 

perpendicular velocity UjX=cs. This loss of ions is not resupplied through flow along the 

field line, as in the model of Sec. 7A, but mainly through cross-field flow from adjacent 

field lines. However, the quasineutrality condition specifies that no field line can have a net 

gain or loss of ions through cross-field flow within the plasma. Thus, there must be an 

inward return flow upstream. Comparing Fig. 7 with Fig. 2, it can be seen that the result is 

a flow pattern which is fairly close to field aligned, and yet shows a significant cross-field 

eddy flow structure. 

The nature of the flow has a significant impact on the density and temperature profile 

within the plasma. The cross-field flow permits the rate of ion loss from those field lines 
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that terminate obliquely on the radial wall to be greater than the loss rate from the interior 

field lines that terminate nearly normally on the end wall. (Recall that in the 1-D model of 

Sec. 7A, the loss rate depends only on the length of the field line, but not on the angle at 

which the field line intersects the wall.) Thus there is an abrupt decrease in the plasma 

density, as we move from the last field line that terminates on the end wall (j = 9) to the first 

field line that terminates on the radial wall. This is evident in Fig. 5. In Fig. 8 we plot the 

average value of the density < nj > on field line j, as a function of j. This figure shows even 

more clearly the sharp change in the plasma around field line j = 9. As j increases further, 

i.e. as we consider the outer field lines that terminate at decreasing values of z, ions are lost 

still faster and there are further decreases in < Oj >. 

The electron temperature Te, which is found to be quite close to isotropic, is shown as 

a surface plot in Fig. 9. Te is close to flat, as expected, on the inner field lines j * 9. On 

field lines j > 9, which terminate on the radial wall, Te increases as the field line becomes 

shorter. This is a consequence of the more rapid loss of ions on these short field lines, as 

discussed in Sec. 7A. However, the electron temperature, which we define as the mean 

<3mev
2/2>, is found to be significantly larger than the values obtained from the fluid model 

of Sec. 7A. The primary reason for this is that the electron energy distribution function falls 

off from Maxwellian in the high energy regime, which controls electron-impact ionization. 

Thus Te must be somewhat larger to give the appropriate ionization rate. Distribution 

functions will be discussed in more detail in forthcoming work. This temperature and 

density pattern is seen in the NRL experiments.46 

The cross-field ion flow also leads to a rather subtle effect on the density of the 

interior field lines. At large z (downstream), the flow is divergent and depletes the ions, but 

in the region of highest density near z = 10 cm, the flow is convergent and brings in 

additional ions. Thus this flow tends to increase the peakedness of the density profile n/z) 

along a field line, i.e. to increase the maximum of ^ but reduce ^ at the ends of the field 

line. Figure 7 shows that the cross-field eddy flow is strongest on the field lines (j=7,8,9) 

that terminate at the outside of the end wall. On field lines that are near the axis, the flow is 

very nearly field-aligned. Thus the density profile n^z) is more peaked on field lines 

j=7,8,9 than on the inner field lines near the axis. However, the loss rate of ions to the walls 
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is proportional to the density at the end of the field line, and thus is slower on field lines 

j=7,8,9. Applying the arguments of Sec. 7A in this more general multidimensional context, 

reducing the particle loss rate increases the density all along the field line. This is the 

explanation of the off-axis density peak which can be seen in Fig. 5 at z = 8, r = 2.8, and 

which is also evident in Fig. 8. 

The potential profile <f>(r,z), shown in Fig. 10, is more complex than might have been 

anticipated. It is not peaked on axis, and it is not simply indicative of the electron pressure 

profile, as in an unmagnetized plasma. Rather, 0(r,z) has a saddle at on axis at z = 9, and for 

z< 15 cm <f> is a monotonically increasing function of r, except in the presheath at the radial 

wall. Downstream, ^ is a monotonically decreasing function of r. This structure is just 

what is needed to drive the radially outward ion flow downstream, and the inward return 

flow upstream. This type of potential structure has been observed in the NRL 

experiments.46 

9. Concluding Remarks 

We have presented a variety of techniques for modeling the quasineutral region of a 

plasma discharge. These include methods for: (i) determining the electric field parallel to 

B, and the associated electron transport; (ii) determining the potential variations transverse 

to B, and the associated ion transport; (iii) determining the spatially and temporally 

dependent sheath potential; (iv) enforcing the Böhm flow condition. All of these 

techniques are time-dependent and fully kinetic, and based on PIC modeling of both the 

electrons and ions. In all cases, the fields and potentials are determined directly from the 

requirement of quasineutrality. Poisson's equation is not used, the Debye shielding length 

is effectively set to zero, and electron plasma oscillations are not present in the modeling. 

As a result, the models focus on the macroscopic processes that are actually of interest, and 

permit the use of large time steps and spatial gridding that enhance computational 

efficiency. 
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The modeling techniques have been discussed in the context of magnetized ECR 

discharges for processing applications, but we believe that they lend themselves to a wide 

range of plasma conditions, including unmagnetized plasmas, unbounded plasmas, and 

high-temperature collisionless plasmas of interest in fusion and space physics. 

The power of the techniques has been demonstrated by applying them analytically to 

some simple fluid situations, and by incorporating them in a two-dimensional 

(axisymmetric) PIC simulation model for an ECR discharge. Analytic study of discharge 

contained within a conducting vessel revealed significant modifications to the classic Simon 

diffusion across a magnetic field.34"36 Simulation of an ECR discharge contained within 

insulating walls revealed unanticipated and important structural features, which are 

dependent on 2-D ion flows. 

In this paper we have not discussed the modeling of the microwave-plasma 

interaction. Computationally efficient approaches to this problem will be discussed in 

subsequent publications. Simulation of discharges within conducting vessels are also in 

progress and will be reported in future publications. 
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Table 1. TYPICAL PARAMETERS FOR AN ECR REACTOR 

Microwave frequency 
Pressure 
Magnetic field 
Plasma density 
Electron temperature     Te ~ 1-10 eV 

f0 ~ 2.45 x 109 Hz 
P ~ 0.5 -10 mTorr 
B0 ~ 20 - 1000 Gauss 
n ~n;~ 1011- 1013/cm3 

Nominal Time Scales 
vll Electron plasma oscillation 10" sec 

Electron gyration 6* 1011 sec 
Electron transit through ECR zone      10"8 sec 
Electron collision frequency 10"7 sec 
Ion plasma period 10"7 sec 
Ion gyration 10"5 sec 
Ion collision frequency 10"5 sec 
Ion lifetime 10" 
Neutral residence time 

sec 

Spatial Scales 

Debye length 
Electron gyroradius 
Sheath thickness 
Electron mfp 
Microwave wavelength 
Ion gyroradius 
Ion mfp 
Device size 

< 0.01 cm 
0.005 to 0.2 cm 

0.1cm 
few to 10'sof cm 

< 12 cm 
up to few cm 
mm's to em's 

10 -100 cm 

10"2 sec 
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Fig. 2 — In the simulation shown in this paper, the geometry of the ECR source is 
simplified to a cylinder. The simulation grid, shown in this figure, is formed by a 
chosen set of magnetic field lines (the actual measured field lines in an experimental 
configuration), and by an equally spaced z-grid. 
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Fig. 3 — Plasma state obtained by solution of the 1-D field-aligned flow model, Eqs. (28) - (31), 
for conditions approximating the long field lines of Fig. 2. Shown are the normalized density 
N(s) s n(s)/n(0) (dashed curve), the normalized ion flow velocity u(s) = Ui(s)/cs (solid curve), and 
the normalized plasma potential O(s) s [<|)(s)-(|>(0)]/Te (dot-dashed curve). The eigenvalue is v = 1.56, 
corresponding to Te = 3.4eV. 
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Fig. 4 — Te as a function of field line length £max, from the 1-D field-aligned flow model 
of Sec. 7A, for conditions approximating the magnetic field configuration of Fig. 2. 
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Fig. 5 — Plasma density n(z,r)xl012 cm"13, shown as a surface plot (a) and a contour plot (b), at time 
500 us, taken from a QUASI-rz simulation with Ar pressure 1 mT, microwave power 350 W, and 
insulating vessel walls. 
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Fig. 6 — Surface plot of the ion fluid velocity components (a) uiz and 
(b) uir at time 500 us, from the simulation of Fig. 5. 
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Fig. 7 _ Vector plot of the ion flux at time 500 usec, from the simulation of Fig. 5. 
Note that the aspect ratio of the plot is different from that of the simulation. 
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47 



Fig. 9 — Surface plot of electron temperature Te, defined as <2mev
2/3>, at time 500 usec. 
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Fig. 10 — Plasma potential (j)(r,z) from the simulation of Fig. 5 at time 500 usec, 
shown as a surface plot (a) and a contour plot (b). 
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